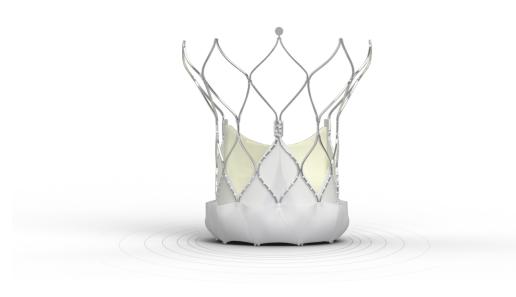
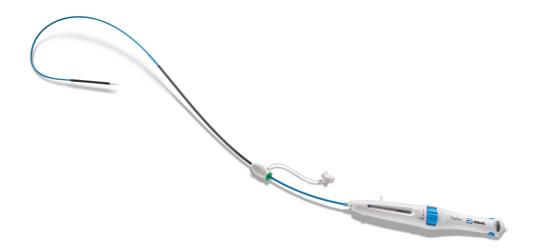


NAVITORTM TAVI SYSTEM


SMART SEALING. EXCEPTIONAL STABILITY. UNCOMPROMISED ACCESS.

Navitor[™] TAVI system offers intelligent design advantages, including smart PVL-sealing NaviSeal[™] Cuff, stable and accurate placement, exceptional single-digit gradients,¹ and uncompromised small vessel access and coronary access to consistently achieve excellent outcomes across a spectrum of routine to challenging anatomies.

1. Abbott data on file CL1014440.


NAVITORTM VALVE

INTELLIGENT DESIGN.

- Smart PVL-sealing NaviSeal[™] Cuff
- Exceptional single-digit gradients¹
- Uncompromised coronary access

FLEXNAVTM DELIVERY SYSTEM

STABILITY AND ACCURACY.

- Low profile 5.0 mm minimum vessel diameter for uncompromised small vessel access
- Enhanced flexibility for excellent deliverability

LEARN MORE

• Stable deployment and accurate valve placement

LEARN MORE

EXCELLENT OUTCOMES.

Clinical results demonstrate excellent outcomes across a spectrum of routine to challenging anatomies. 30-DAY¹

^%

SEVERE TO

MODERATE PVL

ALL CAUSE MORTALITY

^%

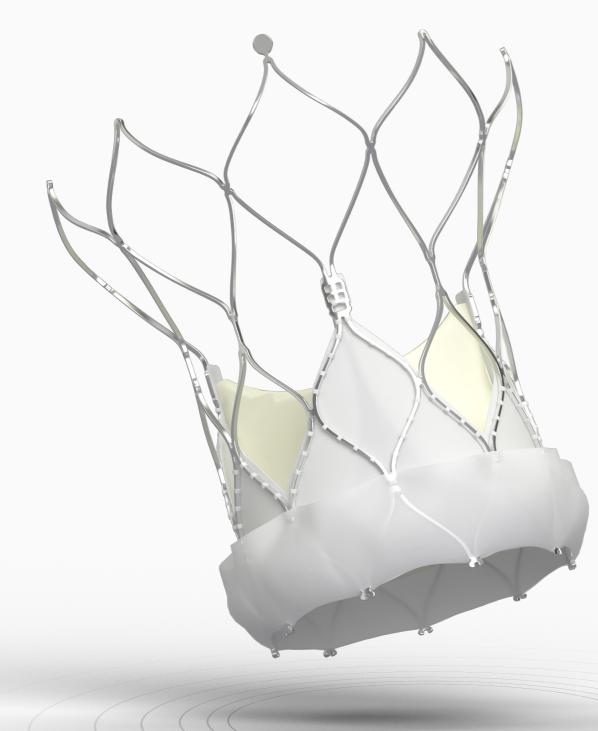
0.8[%] DISABLING

STROKE

MAJOR VASCULAR COMPLICATIONS

0.8%

7.4^{mmHg}


MEAN GRADIENT

SMART SEALING

EXCEPTIONAL HEMODYNAMICS

UNCOMPROMISED CORONARY ACCESS

NAVITOR™ VALVE INTELLIGENT DESIGN.

Advancing the forefront of innovative design, the NavitorTM valve brings together smart PVL-sealing technology, exceptional single-digit gradients,¹ and uncompromised coronary access to achieve excellent clinical outcomes.

SMART SEALING

EXCEPTIONAL HEMODYNAMICS

UNCOMPROMISED CORONARY ACCESS

SMART SEALING. REMARKABLE PERFORMANCE.

NaviSeal[™] Cuff actively synchronizes to the cardiac cycle, seals, and mitigates PVL¹ by expanding to fill calcification-related gaps between the annulus and the valve.

SMART SEALING MITIGATES PVL

30-DAY ECHO CORE LAB DATA1

80% NONE/TRACE 20% 0% MILD MODERATE SEVERE SEVERE SEE THE EVIDENCE Outperforming TAVI Systems

	NAVITOR [™] VALVE FLEX		FLEXNA	AV TM DELIVERY SYSTEM		CLINICAL OUTCOMES	
SMART SEALING		EXCEPTIONAL HEMODYNAMICS		UNCOMPROMISED CORONARY ACCESS			
NAVITOR TM TAVI SYSTEM SMART SEALING.							
PVL 30- ECHO C LAB DA	CORE	NAVITOR™ N=118	EVOLUT [‡] PRO ² N=58	ACURATE NEO2 ^{‡3} N=100	SAPIEN [‡] 3 ⁴ N=113*	PVL IMPACT. Moderate or greater PVL	
None/Tr	race	79.7%	72.4%	35.0%	74.3%	increases 1-year mortality and rehospitalization	

62.0%

3.0%

0.0%

22.1%

3.5%

0.0%

2.4x - 2.7x

following TAVI⁵

Based on number of subjects with data evaluable by the echo core lab.

NOTE: Data not from head-to-head studies. Data differences depicted between these trials may not be directly comparable, statistically significant, or clinically meaningful due to differences in trial protocols, endpoints, and/or patient populations. Data provided for informational purposes only.

NOTE: Referenced data reflect results from prospective, multicenter clinical studies with contemporary valves in high and extreme risk surgical patients conducted to support CE Mark approval.

* Includes data on subjects implanted via transapical and transaortic access.

1. Abbott data on file CL1014440.

Mild

Moderate

Severe

2. Forrest JK, et al. Outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. J Am Coll Cardiol Intv. 2018;11:160-168.

3. Möllmann H. Transcather aortic valve implantation for severe aortic stenosis with the Acurate neo2 valve system: 30-day safety and performance outcomes. Abstract presented at: PCR London Valves; September 10, 2018; London, UK.

4. Webb J, et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol. 2014;64:2235-43.

20.3%

0.0%

0.0%

5. Pibarot P, et al. Assessment of paravalvular regurgitation following TAVR: a proposal of unifying grading scheme. JACC Cardiovasc Imaging. 2015;8(3):340-360. doi: 10.1016/j.jcmg.2015.01.008. PMID: 25772838.

27.6%

0.0%

0.0%

Information contained herein for **DISTRIBUTION outside of the U.S. ONLY**.

Always check the regulatory status for the device in your region.

FLEXNAVTM DELIVERY SYSTEM

CLINICAL OUTCOMES

SMART SEALING

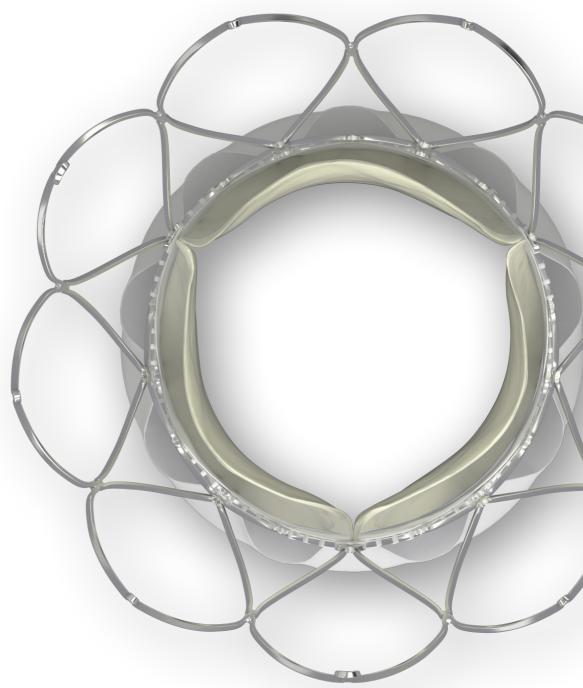
EXCEPTIONAL HEMODYNAMICS

UNCOMPROMISED CORONARY ACCESS

EXCEPTIONAL HEMODYNAMICS. LARGE EFFECTIVE ORIFICE AREAS.¹ SINGLE-DIGIT GRADIENTS.¹

30-DAY ECHO CORE LAB DATA¹

2.0 cm²


7.4 mmHg

SEE THE EVIDENCE Outperforming TAVI Systems

HEMODYNAMIC IMPACT.

Non-tapered stent and large EOAs resulting in single-digit gradients are associated with improved cardiac function, long-term durability, and minimal prosthesis-patient mismatch.¹

1. Abbott data on file CL1014440.

	NAVITOR™ VALVE	FLEXNAV™	DELIVERY SYSTEM	CLINICAL OUTCOMES	
SMAF	RT SEALING	EXCEPTIONAL HEMODYNAMICS		UNCOMPROMISED CORONARY ACCESS	
NAVITOR TM TAVI SYSTEM EXCEPTIONAL HEMODYNAMICS.					
30-DA	Y ECHO CORE LAB DATA	ΝΑΥΙΤΟΒ™	EVOLUT [‡] PRO ²	ACURATE NEO2 ^{‡3}	SAPIEN [‡] 3 ⁴
Mean Gradient (mmHg)		7.4 (N=118)	6.4 (N=55)	7.9 (N=104)	10.6 (N=119*)
EOA (c	:m²)	2.0 (N=101)	2.0 (N=47)	1.7 (N=99)	1.5 (N=97*)

Based on number of subjects with data evaluable by the echo core lab.

NOTE: Data not from head-to-head studies. Data differences depicted between these trials may not be directly comparable, statistically significant, or clinically meaningful due to differences in trial protocols, endpoints, and/or patient populations. Data provided for informational purposes only.

NOTE: Referenced data reflect results from prospective, multicenter clinical studies with contemporary valves in high and extreme risk surgical patients conducted to support CE Mark approval.

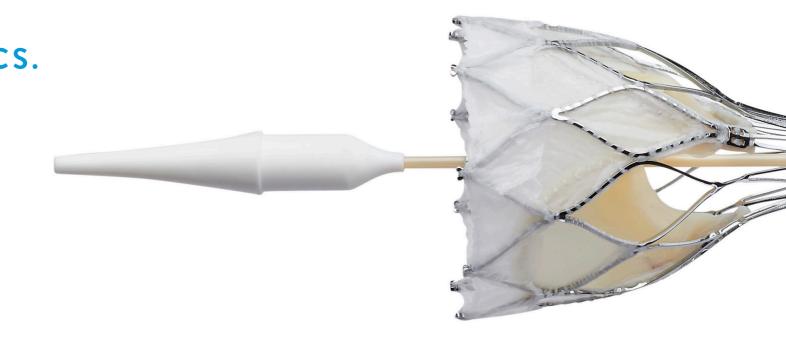
* Includes data on subjects implanted via transapical and transaortic access.

1. Abbott data on file CL1014440.

2. Forrest JK, et al. Early outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. J Am Coll Cardiol Intv. 2018;11:160-168.

3. Möllmann H. Transcather aortic valve implantation for severe aortic stenosis with the Acurate neo2 valve system: 30-day safety and performance outcomes. Abstract presented at: PCR London Valves; September 10, 2018; London, UK.

4. Webb J, et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol. 2014;64:2235-43.


FLEXNAVTM DELIVERY SYSTEM

SMART SEALING

EXCEPTIONAL HEMODYNAMICS

UNCOMPROMISED CORONARY ACCESS

EXCEPTIONAL HEMODYNAMICS. DESIGNED FOR IMMEDIATE FUNCTIONALITY AND DURABILITY.

CONTINUOUS STABILITY. NO RAPID PACING.

The only self-expanding valve with intra-annular leaflets that immediately function and a non-tapered stent, providing hemodynamic stability for a calm and controlled deployment.

DESIGNED FOR DURABILITY.

Exclusive Linx[™] anticalcification (AC) technology resists calcification in four distinct ways to improve long-term valve performance.¹⁻⁴

SEE THE EVIDENCE Outperforming TAVI Systems

1. Frater RWM, et al. Advances in anticalcific and antidegenerative treatment of heart valve bioprostheses. Silent Partners Inc. 1997;8:105-13.

2. Kelly SJ, et al. Biocompatibility and calcification of bioprosthetic heart valves. Society for biomaterials. Sixth World Biomaterials Congress Transaction. 2000;13534.

4. Vyavahare N, et al. Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res. 1998;40(4):577-85.

^{3.} Vyavahare N, et al. Prevention of bioprosthetic heart valve calcification by ethanol preincubation: efficacy and mechanisms. Circulation. 1997;95(2):479-88.

NAVITOR [™] VALVE	FLEXNAV	AV TM DELIVERY SYSTEM CLINICAL OUTCO		LOUTCOMES			
SMART SEALING	EXCEPTIONAL HEM	XCEPTIONAL HEMODYNAMICS		UNCOMPROMISED CORONARY ACCESS			
NAVITOR TM TAVI SYSTEM DESIGNED FOR DURABILITY.							
	ABBOTT LINX [™] AC* ¹⁻⁴	MEDTRONIC AOA ^{‡*5}	BOSTON SCIENTIFIC BIOFIX ^{‡*}	EDWARDS THERMAFIX ^{‡*6}			
PRODUCTS	NAVITOR™	EVOLUT [‡] PRO	ACURATE NEO2 [‡]	SAPIEN [‡] 3			
Reduces free aldehydes ^{1,2}	~	\checkmark	Not Publicly Available	\checkmark			
Extracts lipids ³	\checkmark		Not Publicly Available	\checkmark			
Minimizes uptake of cholesterol ⁴	\checkmark		Not Publicly Available				
Stabilizes leaflet collagen ⁴	\checkmark		Not Publicly Available				

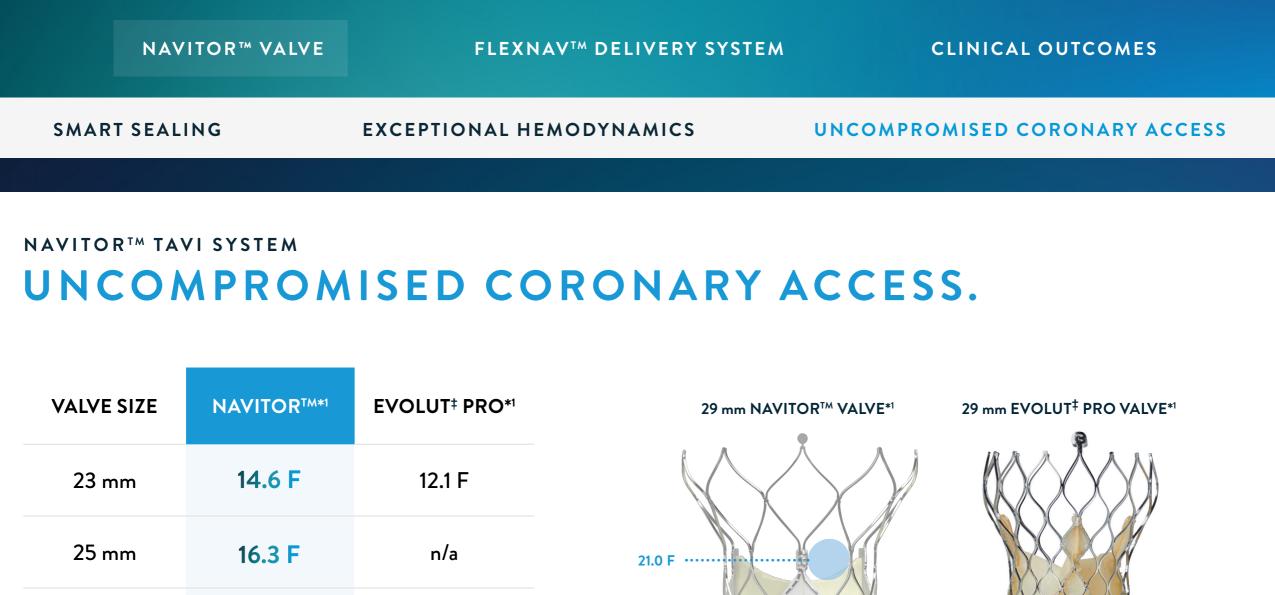
* There is no clinical data currently available that evaluates the long-term impact of anticalcification tissue treatment in humans.

Frater RWM, et al. Advances in anticalcific and antidegenerative treatment of heart valve bioprostheses. Silent Partners Inc. 1997;8:105-13.
 Kelly SJ, et al. Biocompatibility and calcification of bioprosthetic heart valves. Society for biomaterials. Sixth World Biomaterials Congress Transaction. 2000;13534.
 Vyavahare N, et al. Prevention of bioprosthetic heart valve calcification by ethanol preincubation: efficacy and mechanisms. Circulation. 1997;95(2):479-88.
 Vyavahare N, et al. Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res. 1998;40(4):577-85.

5. Gross J. Calcification of bioprosthetic heart valves and its assessment. J Thorac Cardiovasc Surg. 2003;125:6-8.

6. Edwards website, http://www.webcitation.org/667ClPuMH. This WebCitation captured Edwards' site on 12MAR2012.

21.0 F


SMART SEALING

EXCEPTIONAL HEMODYNAMICS

UNCOMPROMISED CORONARY ACCESS

UNCOMPROMISED CORONARY ACCESS. Large-cell geometry and intra-annular valve design preserve coronary access for future intervention.

SEE THE EVIDENCE Outperforming TAVI Systems

26 mm	n/a	11.8 F
27 mm	18.7 F	n/a
29 mm	21.0 F	11.9 F

JosephilieJosephilie11.9 FJosephilieJosephilie100 JosephilieJosephilieJosephilie135 Cells totalJosephilieJosephilie135 Cells totalJosephilieJosephilie15 Cells in the annulus
section of the stentJosephilieJosephilie15 Cells in the annulus
section of the stent

* Based on Abbott coronary access testing.

1. Abbott data on file 90664679.

STABILITY AND ACCURACY.

- Low profile and highly flexible catheter enables excellent deliverability, even in patients with small access vessels and tortuous anatomies
- Controlled deployment provides stable and accurate valve placement

FlexNav Z Abboti

Recapturable,** repositionable,** and retrievable** design

14 F* DELIVERY SYSTEM WITH 5.0 mm minimum vessel diameter

SEE THE EVIDENCE Outperforming TAVI Systems

Outperforming TAVI Systems

* 14 F equivalent integrated sheath diameter.

** Until fully deployed.

NAVITOR™ TAVI SYSTEM UNCOMPROMISED SMALL VESSEL ACCESS.

	NAVITOR [™] WITH FLEXNAV ^{™1}	EVOLUT [‡] PRO WITH ENVEO [‡] PRO ²	ACURATE NEO2 [‡] WITH iSLEEVE ^{‡3,4}	SAPIEN [‡] 3 WITH eSHEATH ^{‡5,6}
Delivery System Profile (Outer Diameter)	6.0 mm 6.3 mm	6.7 mm	6.0 mm	7.6 mm 8.2 mm
Minimum Vessel Diameter	5.0 mm 5.5 mm	5.5 mm	5.5 mm	5.5 mm 6.0 mm

1. Navitor™ TAVI System IFU.

2. Medtronic CoreValve Evolut[‡] PRO IFU.

3. Boston Scientific Acurate neo2[‡] IFU.

4. Boston Scientific iSleeve[‡] IFU.

5. Edwards Sapien 3[‡] IFU.

6. Koehler Sapien 3[‡] eSheath OD BMRI 2015.

EXCELLENT OUTCOMES.

SEE THE EVIDENCE Outperforming TAVI Systems

1. Abbott data on file CL1014440.

EXCELLENT OUTCOMES.

30-DAY	NAVITOR™ N=120	EVOLUT [‡] PRO ² N=60	ACURATE NEO2 ^{‡3} N=120	SAPIEN [‡] 3 ⁴ N=96*
All-Cause Mortality	0.0%	1.7%	3.3%	2.1%
Disabling Stroke	0.8%	1.7%	1.7%	0.0%
Life-Threatening Bleeding	2.5%	11.7%	5.0%	3.1%
Acute Kidney Injury Stage 2/3	1.7%	1.7%	0.8%	1.0%
Major Vascular Complications	0.8% ⁺⁺	10.0%	3.3%	4.2%
New Permanent Pacemaker Implantation	15.0%	11.8%	16.1%	14.5%

NOTE: Data not from head-to-head studies. Data differences depicted between these trials may not be directly comparable, statistically significant, or clinically meaningful due to differences in trial protocols, endpoints, and/or patient populations. Data provided for informational purposes only.

NOTE: Referenced data reflect results from prospective, multicenter clinical studies with contemporary valves in high and extreme risk surgical patients conducted to support CE Mark approval.

* Transfemoral access cohort.

⁺⁺ 0% TAVI delivery system access site-related, 0.8% non-TAVI delivery system access site-related, and 0% non-access site-related.

1. Abbott data on file CL1014440.

2. Forrest JK, et al. Early outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. J Am Coll Cardiol Intv. 2018;11:160-168.

3. Möllmann H. Transcather aortic valve implantation for severe aortic stenosis with the Acurate neo2 valve system: 30-day safety and performance outcomes. Abstract presented at: PCR London Valves; September 10, 2018; London, UK.

4. Webb J, et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol. 2014;64:2235-43.

SMART SEALING. EXCEPTIONAL STABILITY. UNCOMPROMISED ACCESS.

EXPERIENCE EXCELLENT OUTCOMES WITH THE NAVITORTM TAVI SYSTEM.

CAUTION: This product is intended for use by or under the direction of a physician. Prior to use, reference the Instructions for Use, inside the product carton (when available) or at eifu.abbottvascular.com or at medical.abbott/manuals for more detailed information on Indications, Contraindications, Warnings, Precautions and Adverse Events.

Information contained herein for **DISTRIBUTION** outside of the U.S. ONLY. Always check the regulatory status for the device in your region.

Illustrations are artist's representations only and should not be considered as engineering drawings or photographs.

Photo(s) on file at Abbott.

Abbott

3200 Lakeside Dr., Santa Clara, CA 95054 USA
TM Indicates a trademark of the Abbott group of companies.
[‡] Indicates a third-party trademark, which is property of its respective owner.
www.structuralheart.abbott
©2021 Abbott. All rights reserved. MAT-2106013 v1.0 | Item approved for Global OUS use only.

